Из серии Foundations and Trends in Machine Learning издательства NOWPress, 2008, -305 pp.The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide variety of algorithms — among them sum-product, cluster variational methods, expectation-propagation, mean field methods, max-product and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.Introduction
Background
Graphical Models as Exponential Families
Sum-Product, Bethe–Kikuchi, and Expectation-Propagation
Mean Field Methods
Variational Methods in Parameter Estimation
Convex Relaxations and Upper Bounds
Integer Programming, Max-product, and Linear Programming Relaxations
Moment Matrices, Semidefinite Constraints, and Conic Programming Relaxation
Discussion
A Background Material
B Proofs and Auxiliary Results: Exponential Families and Duality
C Variational Principles for Multivariate Gaussians
D Clustering and Augmented Hypergraphs
E Miscellaneous Results
Из серии Foundations and Trends in Machine Learning издательства NOWPress, 2008, -305 pp.概率图形模型的形式主义为捕捉随机变量之间的复杂依赖关系和建立大规模的多变量统计模型提供了一个统一的框架。图解模型已经成为许多统计、计算和数学领域的研究重点,包括生物信息学、通信理论、统计物理学、组合优化、信号和图像处理、信息检索和统计机器学习。许多在具体实例中出现的问题--包括计算概率分布的边际和模式的关键问题--最好在一般情况下研究。通过指数族表示法,并利用指数族的累积函数和熵之间的共轭对偶性,我们开发了计算似然、边际概率和最有可能的配置等问题的一般变量表示法。我们描述了各种各样的算法--其中包括和积、集群变异方法、期望传播、均值场方法、最大积和线性编程松弛以及圆锥编程松弛--都可以用这些变异表示的精确或近似形式来理解。变分方法为马尔科夫链蒙特卡洛提供了一个补充性的替代方案,作为大规模统计模型推断的近似方法的一般来源。
背景介绍
作为指数族的图形模型
和积法、贝特-菊池法和期望-传播法
均值场方法
参数估计中的变分方法
凸式松弛和上界
整数编程、最大乘积和线性编程松弛
矩矩阵、半定式约束和圆锥编程松弛
讨论
A 背景材料
B 证明和辅助结果。指数族和二重性
C 多变量高斯的变异原理
D 聚类和增强的超图
E 杂项结果
通过www.DeepL.com/Translator(免费版)翻译
相关文库
电子书-Linux是如何工作的How Linux Works(英)
1432
类型:电子书
上传时间:2022-04
标签:计算机、操作系统、内部结构)
语言:英文
金额:5积分
《面向初学者的机器学习》Machine Learning For Absolute Beginners
1069
类型:电子书
上传时间:2021-05
标签:机器学习、计算机、算法)
语言:英文
金额:5积分
计算机行业深度研究报告:ChatGPT,开启AI新纪元-20230201-31页
1008
类型:行研
上传时间:2023-02
标签:计算机、处理器)
语言:中文
金额:免费
电子书-DAMA数据管理知识体系指南(DAMA DMBOK)(英)
1003
类型:电子书
上传时间:2022-03
标签:计算机、数据库、数据管理)
语言:英文
金额:5积分
电子书-用FastAPI构建数据科学应用:用Python开发、管理和部署高效的机器学习应用程序(英)
1000
类型:电子书
上传时间:2022-03
标签:计算机、数据库、人脸检测系统)
语言:英文
金额:5积分
电子书-高维数据统计:方法、理论与应用(英)
912
类型:电子书
上传时间:2021-10
标签:计算机、统计学、数据统计)
语言:英文
金额:5积分
电子书-软件架构师手册:通过实施有效的架构概念成为成功的软件架构师(英)
895
类型:电子书
上传时间:2021-11
标签:计算机、软件架构 、软件)
语言:英文
金额:5积分
计算机行业:多模态大模型技术演进及研究框架-20230318-51页
885
类型:行研
上传时间:2023-03
标签:计算机、虚拟人、智能人)
语言:中文
金额:免费
计算机行业:GPT产业梳理,GPT_1到ChatGPT-20230214-17页
848
类型:行研
上传时间:2023-02
标签:计算机、GPT)
语言:中文
金额:免费
电子书-大数据MBA:用数据科学推动商业战略(英)
838
类型:电子书
上传时间:2021-11
标签:计算机、数据库、大数据)
语言:英文
金额:5积分
积分充值
30积分
6.00元
90积分
18.00元
150+8积分
30.00元
340+20积分
68.00元
640+50积分
128.00元
990+70积分
198.00元
1640+140积分
328.00元
微信支付
余额支付
积分充值
应付金额:
0 元
请登录,再发表你的看法
登录/注册