Heating and cooling consume the most energy of all end uses, accounting for nearly half of global final energy consumption. Most of this is generated from fossil fuels. In 2019, fossil fuels and non-renewable electricity met more than 77% of heating and cooling demand (IRENA, IEA, REN21, 2020). The energy consumed for heating and cooling is thus a significant contributor to air pollution and carbon dioxide emissions: heating and cooling accounted for almost 40% of energy-related emissions in 2018, a share that has remained almost unchanged for the past decade, owing to the continued dominance of fossil fuels (IRENA, IEA, REN21, 2020).
Half of the energy consumed for heating and cooling is consumed in industrial processes, while another 46% is used in residential and commercial buildings – for space and water heating and, to a lesser extent, for cooking. The remainder is used in agriculture for greenhouse heating and for drying, soil heating and aquaculture (IRENA, IEA, REN21, 2020). Given that heating water accounts for about 18% of household energy use (US DOE, n.d.), on average, and that demand for hot water is growing with household incomes, the decarbonisation of heating and cooling in general, and water heating in particular is thus a key element of the on-going energy transition needed to limit the rise in global temperatures to well below 1.5°C (IRENA, IEA and REN21, 2018, 2020).
Solar thermal systems for water heating, or solar water heaters, represent a mature technology that has been successfully deployed in several developed and developing countries for more than 30 years. In countries like Barbados, Cyprus and Israel, 80 -90% of residential houses have domestic solar water heating systems on their roofs. The deployment of solar water heaters is particularly needed in countries that rely on fossil fuel imports to cover their heating needs, or where the use of electric boilers and heat pumps may strain the electricity system or be unaffordable to many households (ETSAP and IRENA, 2015). In South Africa, for instance, water heating with electricity and gas can account for 30-40% of the energy bill for a typical household (Hohne, Kusakana and Numbi, 2019)
相关报告
可再生能源零废未来:风电、光伏回收产业发展研究-绿色和平
3793
类型:专题
上传时间:2022-07
标签:可再生能源、风电、光伏回收)
语言:中文
金额:5积分
光伏产业链全景图
3768
类型:行研
上传时间:2022-09
标签:光伏、太阳能)
语言:中文
金额:免费
最新翻译IRENA3.5万字报告:中国的碳中和之路,可再生能源的前景和作用(中英对照)
3421
类型:专题
上传时间:2022-07
标签:可再生能源、政策扶持、经济转型)
语言:中英
金额:7元
清华大学:通往极高比例可再生能源的电力系统之路
3335
类型:行研
上传时间:2022-05
标签:可再生能源、电力)
语言:中文
金额:免费
长三角地区分布式可再生能源发展潜力及愿景
2743
类型:专题
上传时间:2021-04
标签:长三角、分布式、可再生能源)
语言:中英
金额:5积分
国际能源署《2020年可再生能源报告》(中文版)
2663
类型:行研
上传时间:2021-01
标签:可再生能源)
语言:中文
金额:免费
全球能源转型展望2021-DNV合集
1899
类型:行研
上传时间:2021-10
标签:能源转型、可再生能源)
语言:中文
金额:免费
3060可再生能源趋势报告
1504
类型:行研
上传时间:2021-06
标签:可再生能源、3060)
语言:中文
金额:免费
高盛-中国经济新三大动能:电池、电车、可再生能源
1466
类型:宏观
上传时间:2023-10
标签:中国经济、电池、电车、可再生能源)
语言:英文
金额:5积分
中国可再生能源经验总结报告
1268
类型:行研
上传时间:2022-03
标签:可再生能源)
语言:中文
金额:免费
积分充值
30积分
6.00元
90积分
18.00元
150+8积分
30.00元
340+20积分
68.00元
640+50积分
128.00元
990+70积分
198.00元
1640+140积分
328.00元
微信支付
余额支付
积分充值
应付金额:
0 元
请登录,再发表你的看法
登录/注册