Heating and cooling consume the most energy of all end uses, accounting for nearly half of global final energy consumption. Most of this is generated from fossil fuels. In 2019, fossil fuels and non-renewable electricity met more than 77% of heating and cooling demand (IRENA, IEA, REN21, 2020). The energy consumed for heating and cooling is thus a significant contributor to air pollution and carbon dioxide emissions: heating and cooling accounted for almost 40% of energy-related emissions in 2018, a share that has remained almost unchanged for the past decade, owing to the continued dominance of fossil fuels (IRENA, IEA, REN21, 2020).
Half of the energy consumed for heating and cooling is consumed in industrial processes, while another 46% is used in residential and commercial buildings – for space and water heating and, to a lesser extent, for cooking. The remainder is used in agriculture for greenhouse heating and for drying, soil heating and aquaculture (IRENA, IEA, REN21, 2020). Given that heating water accounts for about 18% of household energy use (US DOE, n.d.), on average, and that demand for hot water is growing with household incomes, the decarbonisation of heating and cooling in general, and water heating in particular is thus a key element of the on-going energy transition needed to limit the rise in global temperatures to well below 1.5°C (IRENA, IEA and REN21, 2018, 2020).
Solar thermal systems for water heating, or solar water heaters, represent a mature technology that has been successfully deployed in several developed and developing countries for more than 30 years. In countries like Barbados, Cyprus and Israel, 80 -90% of residential houses have domestic solar water heating systems on their roofs. The deployment of solar water heaters is particularly needed in countries that rely on fossil fuel imports to cover their heating needs, or where the use of electric boilers and heat pumps may strain the electricity system or be unaffordable to many households (ETSAP and IRENA, 2015). In South Africa, for instance, water heating with electricity and gas can account for 30-40% of the energy bill for a typical household (Hohne, Kusakana and Numbi, 2019)
相关报告
最新翻译IRENA3.5万字报告:中国的碳中和之路,可再生能源的前景和作用(中英对照)
3532
类型:专题
上传时间:2022-07
标签:可再生能源、政策扶持、经济转型)
语言:中英
金额:7元
长三角地区分布式可再生能源发展潜力及愿景
2896
类型:专题
上传时间:2021-04
标签:长三角、分布式、可再生能源)
语言:中英
金额:5积分
中国经济新三大动能:电池、电车、可再生能源
1518
类型:宏观
上传时间:2023-10
标签:中国经济、电池、电车、可再生能源)
语言:英文
金额:5积分
可再生能源2020—分析和预测至2025
1292
类型:行研
上传时间:2020-11
标签:可再生能源、202)
语言:英文
金额:5积分
报告:全球可再生能源动态2021
1118
类型:专题
上传时间:2021-06
标签:可再生能源、动态报告)
语言:英文
金额:10积分
中国碳中和之路—可再生能源的视角和角色
1076
类型:专题
上传时间:2022-07
标签:碳中和、可再生能源)
语言:英文
金额:5积分
IRENA-2021年可再生能源容量统计-2021.4
1016
类型:专题
上传时间:2021-04
标签:可再生能源、能源容量)
语言:英文
金额:5积分
太阳能未来研究
995
类型:行研
上传时间:2021-10
标签:太阳能)
语言:英文
金额:5积分
世界可再生能源统计年鉴2021-460页
949
类型:专题
上传时间:2021-08
标签:世界、可再生能源、统计年鉴)
语言:英文
金额:5积分
天空的极限—太阳能和风能潜力是全球能源需求的100倍
941
类型:专题
上传时间:2021-05
标签:太阳能、风能、能源)
语言:英文
金额:5积分
积分充值
30积分
6.00元
90积分
18.00元
150+8积分
30.00元
340+20积分
68.00元
640+50积分
128.00元
990+70积分
198.00元
1640+140积分
328.00元
微信支付
余额支付
积分充值
应付金额:
0 元
请登录,再发表你的看法
登录/注册