微信扫一扫联系客服

微信扫描二维码

进入报告厅H5

关注报告厅公众号

279

AIGC行业专题报告:从文生图到文生视频_技术框架与商业化

# AIGC # 文生图 # 文生视频 大小:6.35M | 页数:73 | 上架时间:2023-11-13 | 语言:中文

AIGC行业专题报告:从文生图到文生视频_技术框架与商业化-20231102-国海证券-73页.pdf

AIGC行业专题报告:从文生图到文生视频_技术框架与商业化-20231102-国海证券-73页.pdf

试看10页

类型: 行研

上传者: AIGC前沿

撰写机构: 国海证券

出版日期: 2023-11-02

摘要:

文生图和文生视频的底层技术框架较为相似,主要包括GAN、自回归和扩散模型三大路径,其中扩散模型(Diffusion model)为当前主流生成模型,多个指标对比下综合占优,能在较为可控的算力成本和较快的速度下生成具备多样性、高质量的图像:①图像质量:扩散模型>自回归模型>GAN模型。FID值(Fréchet Inception Distance score)是用于评估模型生成的图像质量的指标,是用来计算真实图像与生成图像的特征向量间距离的一种度量。FID值越小,可以认为图像质量在一定程度上越优。从不同模型的FID得分来看,扩散模型平均数较小,反应图像质量较高。②参数量:自回归模型>扩散模型>GAN模型。GAN的参数量一般在千万级别,整体较为轻巧,扩散模型的参数量在十亿级别,自回归模型在十亿到百亿级不等。③生成速度(由快到慢):GAN模型>扩散模型>自回归模型。生成速度与参数量级为负相关关系。④训练成本:自回归>扩散模型>GAN模型。由于参数量级较小,GAN模型训练成本小且开源模型多,仍具备一定优势。而自回归模型参数量级较大,整体训练成本更高。在单张A100GPU下,120亿参数的DALL-E需要18万小时,200亿参数的 Parti更是需要超过100万小时,扩散模型参数量在十亿级别,整体训练成本较为适中。

展开>> 收起<<

请登录,再发表你的看法

登录/注册

AIGC前沿

相关报告

更多

浏览量

(181)

下载

(18)

收藏

分享

购买

5积分

0积分

原价5积分

VIP

*

投诉主题:

  • 下载 下架函

*

描述:

*

图片:

上传图片

上传图片

最多上传2张图片

提示

取消 确定

提示

取消 确定

提示

取消 确定

积分充值

选择充值金额:

30积分

6.00元

90积分

18.00元

150+8积分

30.00元

340+20积分

68.00元

640+50积分

128.00元

990+70积分

198.00元

1640+140积分

328.00元

微信支付

余额支付

积分充值

填写信息

姓名*

邮箱*

姓名*

邮箱*

注:填写完信息后,该报告便可下载

选择下载内容

全选

取消全选

已选 1