微信扫一扫联系客服

微信扫描二维码

进入报告厅H5

关注报告厅公众号

103

IMF-识别Nowscasting模型的最优指标和滞后项(英)-2023.3

# 最优指标 # 滞后项 大小:2.18M | 页数:38 | 上架时间:2023-03-13 | 语言:英文

IMF-识别Nowscasting模型的最优指标和滞后项(英)-2023.3.pdf

IMF-识别Nowscasting模型的最优指标和滞后项(英)-2023.3.pdf

试看10页

类型: 专题

上传者: Wna

撰写机构: IMF

出版日期: 2023-03-05

摘要:

Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any guidance on selecting the best explantory variables (both high- and low-frequency indicators) from the (typically) larger set of variables available to the nowcaster. Second, in addition to the selection of explanatory variables, the order of the autoregression and moving average terms to use in the baseline nowcasting regression is often set arbitrarily. This paper proposes a simple procedure that simultaneously selects the optimal indicators and ARIMA(p,q) terms for the baseline nowcasting regression. The proposed AS-ARIMAX (Adjusted Stepwise Autoregressive Moving Average methods with exogenous variables) approach significantly reduces out-of-sample root mean square error for nowcasts of real GDP of six countries, including India, Argentina, Australia, South Africa, the United Kingdom, and the United States.

展开>> 收起<<

请登录,再发表你的看法

登录/注册

Wna

相关报告

更多

浏览量

(81)

下载

(2)

收藏

分享

购买

5积分

0积分

原价5积分

VIP

*

投诉主题:

  • 下载 下架函

*

描述:

*

图片:

上传图片

上传图片

最多上传2张图片

提示

取消 确定

提示

取消 确定

提示

取消 确定

积分充值

选择充值金额:

30积分

6.00元

90积分

18.00元

150+8积分

30.00元

340+20积分

68.00元

640+50积分

128.00元

990+70积分

198.00元

1640+140积分

328.00元

微信支付

余额支付

积分充值

填写信息

姓名*

邮箱*

姓名*

邮箱*

注:填写完信息后,该报告便可下载

选择下载内容

全选

取消全选

已选 1