This paper examines the drivers of CPI inflation through the lens of a simple, but computationally intensive machine learning technique. More specifically, it predicts inflation across 20 advanced countries between 2000 and 2021, relying on 1,000 regression trees that are constructed based on six key macroeconomic variables. This agnostic, purely data driven method delivers (relatively) good outcome prediction performance. Out of sample root mean square errors (RMSE) systematically beat even the in-sample benchmark econometric models, with a 28% RMSE reduction relative to a naïve AR(1) model and a 8% RMSE reduction relative to OLS. Overall, the results highlight the role of expectations for inflation outcomes in advanced economies, even though their importance appears to have declined somewhat during the last 10 years.
积分充值
30积分
6.00元
90积分
18.00元
150+8积分
30.00元
340+20积分
68.00元
640+50积分
128.00元
990+70积分
198.00元
1640+140积分
328.00元
微信支付
余额支付
积分充值
应付金额:
0 元
请登录,再发表你的看法
登录/注册